〆 个性化推荐系统开源项目一览

I have found it worth living, and would gladly live it again if the chance were offered me.

Open Source Project: 整理了关于目前市场上个性化推荐系统的一些开源项目。

[主要语言] C++/java

1.SVDFeature

主页:SVDFeature - SVDFeature 语言:C++
一个feature-based协同过滤和排序工具,由上海交大Apex实验室开发,代码质量较高。在KDD Cup 2012中获得第一名,KDD Cup 2011中获得第三名,相关论文 发表在2012的JMLR中,这足以说明它的高大上。SVDFeature包含一个很灵活的Matrix Factorization推荐框架,能方便的实现SVD、SVD++等方法, 是单模型推荐算法中精度最高的一种。SVDFeature代码精炼,可以用 相对较少的内存实现较大规模的单机版矩阵分解运算。另外含有Logistic regression的model,可以很方便的用来进行ensemble。

2.LibMF

主页:LIBMF: A Software for Matrix Factorization for Recommender Systems 语言:C++
作者Chih-JenLin来自大名鼎鼎的台湾国立大学,他们在机器学习领域享有盛名,近年连续多届KDD Cup竞赛上均 获得优异成绩,并曾连续多年获得冠军。台湾大学的风格非常务实,业界常用的LibSVM, Liblinear等都是他们开发的,开源代码的效率和质量都非常高。LibMF在矩阵分解的并行化方面作出了很好的贡献,针对SGD(随即梯度下降)优化方法在并行计算中存在的locking problem和memory discontinuity问题,提出了一种 矩阵分解的高效算法FPSGD(Fast Parallel SGD),根据计算节点的个数来划分评分矩阵block,并分配计算节点。系统介绍可以见这篇 论文(ACM Recsys 2013的 Best paper Award)。

3.LibFM

主页:libFM 语言:C++
作者是德国Konstanz大学的Steffen Rendle,他用LibFM同时玩转KDD Cup 2012 Track1和Track2两个子竞赛单元,都取得了很好的成绩,说明LibFM是非常管用的利器。LibFM是专门用于矩阵分解的利器,尤其是其中实现了MCMC(Markov Chain Monte Carlo)优化算法,比常见的SGD优化方法精度要高,但运算速度要慢一些。当然LibFM中还 实现了SGD、SGDA(Adaptive SGD)、ALS(Alternating Least Squares)等算法。

4.Lenskit

主页:LensKit Recommender Toolkit 语言Java
这个Java开发的开源推荐系统,来自美国的明尼苏达大学的GroupLens团队,也是推荐领域知名的测试数据集Movielens的作者。该源码托管在GitHub上,lenskit/lenskit · GitHub。主要包含lenskit-api,lenskit-core, lenskit-knn,lenskit-svd,lenskit-slopone,lenskit-parent,lenskit-data-structures,lenskit-eval,lenskit-test等模块,主要实现了k-NN,SVD,Slope-One等 典型的推荐系统算法。

5.GraphLab

主页:GraphLab - Collaborative Filtering 语言:C++
Graphlab是基于C++开发的一个高性能分布式graph处理挖掘系统,特点是对迭代的并行计算处理能力强(这方面是hadoop的弱项),由于功能独到,GraphLab在业界名声很响。 用GraphLab来进行大数据量的random walk或graph-based的推荐算法非常有效。Graphlab虽然名气比较响亮(CMU开发),但是对一般数据量的应用来说可能还用不上。GraphLab主要实现了ALS,CCD++,SGD,Bias-SGD,SVD++,Weighted-ALS,Sparse-ALS,Non-negative Matrix Factorization,Restarted Lanczos Algorithm等算法。

6.Mahout

主页:Apache Mahout: Scalable machine learning and data mining 语言:Java
Mahout 是 Apache Software Foundation (ASF) 开发的一个全新的开源项目,其主要目标是创建一些可伸缩的机器学习算法,供开发人员在 Apache 在许可下免费 使用。Mahout项目是由 Apache Lucene社区中对机器学习感兴趣的一些成员发起的,他们希望建立一个可靠、文档翔实、可伸缩的项目,在其中实现一些常见的用于 聚类和分类的机器学习算法。该社区最初基于 Ngetal. 的文章 “Map-Reduce for Machine Learning on Multicore”,但此后在发展中又并入了更多广泛的机器学习 方法,包括Collaborative Filtering(CF),Dimensionality Reduction,Topic Models等。此外,通过使用 Apache Hadoop 库,Mahout 可以有效地扩展到云中。在Mahout的Recommendation类算法中,主要有User-Based CF,Item-Based CF,ALS,ALS on Implicit Feedback,Weighted MF,SVD++,Parallel SGD等。

7.Myrrix

主页:http://myrrix.com/ 语言:Java
Myrrix最初是Mahout的作者之一Sean Owen基于Mahout开发的一个试验性质的推荐系统。目前Myrrix已经是一个完整的、实时的、可扩展的集群和推荐系统,主要 架构分为两部分:服务层:在线服务,响应请求、数据读入、提供实时推荐;计算层:用于分布式离线计算,在后台使用分布式机器学习算法为服务层更新机器学习 模型。Myrrix使用这两个层构建了一个完整的推荐系统,服务层是一个HTTP服务器,能够接收更新,并在毫秒级别内计算出更新结果。服务层可以单独使用,无需 计算层,它会在本地运行机器学习算法。计算层也可以单独使用,其本质是一系列的Hadoop jobs。目前Myrrix以被 Cloudera 并入Oryx项目。

8.EasyRec

主页:easyrec :: open source recommendation engine 语言:Java
EasyRec是一个易集成、易扩展、功能强大且具有可视化管理的推荐系统,更像一个完整的推荐产品,包括了数据录入模块、管理模块、推荐挖掘、离线分析等。 EasyRec可以同时给多个不同的网站提供推荐服务,通过tenant来区分不同的网站。架设EasyRec服务器,为网站申请tenant,通过tenant就可以很方便的集成到 网站中。通过各种不同的数据收集(view,buy.rating)API收集到网站的用户行为,EasyRec通过离线分析,就可以产生推荐信息,您的网站就可以通过 Recommendations和Community Rankings来进行推荐业务的实现。

9.Waffles

主页:http://waffles.sourceforge.net/ 语言:C++
Waffles英文原意是蜂蜜甜饼,在这里却指代一个非常强大的机器学习的开源工具包。Waffles里包含的算法特别多,涉及机器学习的方方面面,推荐系统位于 其中的Waffles_recommend tool,大概只占整个Waffles的1/10的内容,其它还有分类、聚类、采样、降维、数据可视化、音频处理等许许多多工具包,估计 能与之媲美的也就数Weka了。

10.RapidMiner

主页:Predictive Analytics, Data Mining, Self-service, Open source 语言:Java
RapidMiner(前身是Yale)是一个比较成熟的数据挖掘解决方案,包括常见的机器学习、NLP、推荐、预测等方法(推荐只占其中很小一部分),而且带有GUI的 数据分析环境,数据ETL、预处理、可视化、评估、部署等整套系统都有。另外RapidMiner提供commercial license,提供R语言接口,感觉在向着一个商用的 数据挖掘公司的方向在前进。

11.surpriselib

主页:surpriselib 语言:Python
Surprise is a Python scikit building and analyzing recommender systems.
Surprise was designed with the following purposes in mind:

Give users perfect control over their experiments. To this end, a strong emphasis is laid on documentation, which we have tried to make as clear and precise as possible by pointing out every detail of the algorithms.
Alleviate the pain of Dataset handling. Users can use both built-in datasets (Movielens, Jester), and their own custom datasets.
Provide various ready-to-use prediction algorithms such as baseline algorithms, neighborhood methods, matrix factorization-based ( SVD, PMF, SVD++, NMF), and many others. Also, various similarity measures (cosine, MSD, pearson…) are built-in.
Make it easy to implement new algorithm ideas.
Provide tools to evaluate, analyse and compare the algorithms performance. Cross-validation procedures can be run very easily using powerful CV iterators (inspired by scikit-learn excellent tools), as well as exhaustive search over a set of parameters.

12 LibRec

主页:LibRec国内推荐系统大牛,创办了推荐系统开源项目LibRec。java版本开源推荐系统,包含了70多种经典的推荐算法。

13 Recommender-System

python版本开源推荐系统,包含了多种经典的推荐算法。

14 Neural Collaborative Filtering

python实现神经协同过滤推荐算法。

真孒今将命


此致: 敬礼!

送赵法师还蜀因名山奠简

作者: 李隆基

摘自: 《全唐诗》

道家奠灵简, 自昔仰神仙

真孒今将命, 苍生福可传

江山寻故国, 城郭信依然

二室遥相望, 云回洞里天

座右铭: 进化是形成我们的身体形状和我们内在本能的主要力量, 他赋予我们大脑和学习机制,使我们可以根据经验实现自我更新。我们还需要终生学习,以改变我们的行为,从而适应包括进化论还不能预测的和可预测的各种环境。
Evolution is the major force that defines our bodily shape as well as our built-in instincts and reflexes. We also learn to change our behavior during our lifetime. This helps us cope with changes in the environment that cannot be predicted by evolution. Organisms that have a short life in a well-defined environment may have all their behavior built-in, but instead of hardwiring into us all sorts of behavior for any circumstance that we could encounter in our life, evolution gave us a large brain and a mechanism to learn, such that we could update ourselves with experience and adapt to different environments.